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Abstract
The energetically favorable structures and mechanical response to tensile
and pure bending forces of single-wall and multi-wall cylindrical silica
nanotubes of varying lengths and radii are predicted via classical molecular
dynamics and checked, in part, by quantum mechanical studies. Two distinct
parameterizations of a popular pair potential are used. One is adapted to
bulk properties, the other to small nanoclusters. Predicted stable structures
for single-walled tubes as a function of length at specified radii are dependent
on potential parameterization. For the bulk-adapted parameterization, single-
walled tubes with large radii (12-membered rings) have an energetic preference
to rearrangement into twinned parallel-column structures. Conversely, the
nanobased parameterization puts such twinned structures slightly higher in
energy than the corresponding single tubes. Both the mechanical properties
and failure mechanisms in tension and pure bending of the single-walled
tubes depend upon the nanorod dimensions. Predicted structures for the
double-walled nanotubes exhibit qualitatively opposite trends for the two
parameterizations. Though the potentials give different values for the tensile
and bending elastic moduli for the various structures, the qualitative pictures of
nanotube failure are quite similar. For comparison and insight, we also studied
a small single-walled nanotube using both pure quantum forces and quantum–
classical multi-scale simulations. Some distinctly different behaviors emerged.
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1. Introduction

Silica nanostructures have been the subject of recent theoretical [1–3] and experimental
studies because of the potential importance of such structures for photonics, electronics,
pharmaceuticals, and catalysis [4–9]. Particular attention has been paid to silica nanotubes,
given their structural similarity to carbon nanotubes, which in turn, have been under immense
scrutiny in the last decade. Since the work of Nemetschek and Hofmann [10], there have
been many efforts to form silica nanotubes using biological substrates, carbon nanotubes,
nanomembranes, and metal oxides as templates [11–15]. Yet not much seems to be known
about the energetics and mechanical properties of such nanostructures. Thus, we examine
the properties of silica nanotubes that have initial axial symmetry and consist of stacked
silica rings with even numbers of silica units. Specifically, we look at the relative energetic
stabilities of such nanotubes and a related multi-wall nanotube as a function of ring size and
tube length. Further, we examine the behavior of the nanotubes under pure tension or bending.
For comparison and insight, we also examine the structure and mechanical properties of a
relatively small silica nanotube as predicted by both multi-scale, quantum mechanical and all-
quantum force calculations.

2. Methodology

2.1. Nanotube construction

The structure of all the silica nanotubes under study is similar to the model nanorod that
Zhu et al constructed for investigation of hydrolytic weakening in silica systems [16]. Their
nanorod consisted of eight six-membered planar silica rings connected via bridging oxygens
and terminated with oxygen atoms at both ends so as to preserve stoichiometry. We denote
this single-walled tube (SWT) structure as 6M–8L (six-membered rings, eight rings long).
The geometry provides a convenient model of the experimentally synthesized silica nanotube
structures without introducing complications from terminating ligands. With that nanorod as a
template, we constructed (i) tubes of varying radii by adding or removing Si (and corresponding
O) atoms in a ring, and (ii) tubes of various lengths. Specifically we treated nanotubes of radii
4M, 6M, 8M, 10M , and 12M and lengths 6L, 12L, 18L, 24L, 30L, and 36L. The structure
denoted as 6M–6L is shown in figure 1. In addition, we constructed multi-wall nanotubes
(MWT) consisting of a 4M or 6M tube axially concentric inside a 10M or 12M SWT, all at
different lengths.

2.2. Computational procedure

In any molecular dynamics (MD) simulation the inter-atomic potential determines the accuracy
of the predicted thermodynamic and kinetic properties. Most successful potentials for silica are
parameterized, at least in part, to reproduce the properties of bulk polymorphs of silica, hence
might not be expected to model nanoscale structures accurately. The key issue is whether a
classical potential can be adjusted so as to reproduce the quantum size effects characteristic
of nanostructures. Toward that goal, there are potentials specifically parameterized to describe
silica nanostructures. Therefore we employed both a nanoscale parameterization (hereafter
FB [17]) and a bulk parameterization (hereafter BKS [18]) of the same functional form. While
BKS incorporates both first-principles cluster and experimental bulk (quartz) information,
FB is parameterized solely to yield the correct first-principles geometries and energies of
some small silica nanoclusters. As a result, the two parameter sets are rather different. The
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Figure 1. Six (6-L) six-membered (6-M) planar silica ring single-wall nanotube (6M–6L SWT);
light grey spheres are Si atoms, dark grey O atoms.

Table 1. Parameter values for BKS, FB, and NTH-2 potentials. Charges Q in units of electron
charge magnitude.

i– j Ai j (eV) ρi j (Å) Cij (Å
−6

eV) QSi QO

BKS Si–O 18 003.757 0.205 133.538
2.400 −1.200O–O 1 388.773 0.362 175.000

Si–Si — — —

FB Si–O 10 454.202 0.208 63.047
2.400 −1.200O–O 1 428.406 0.358 41.374

Si–Si 79 502.113 0.201 446.780

NTH-2 Si–O 240 101.90 0.1270 2.0551
2.050 −1.025O–O 39 439.87 0.2147 5.8512

Si–Si 27 530.45 0.0467 1.5505

functional form is

U(ri j ) = Qi Q j

ri j
+ Ai j e

− ri j
ρi j − Ci j

r 6
i j

. (1)

Parameter values are given in table 1 (we discuss the NTH-2 parameterization also given in
table 1 later). For the purely classical MD, we used the DL POLY code [19]. To characterize the
structure and energetics of the SWTs and MWTs for both the BKS and FB parameterizations,
all structures initially were energy minimized at 0 K using the BFGS algorithm [20], then
equilibrated at 10 and 300 K using the Nosé–Hoover thermostat. The binding energy/atom
(BE) and the structural properties of the equilibrated nanotubes at 10 K then were determined
as a function of tube dimensions; see section 3.

Tensile and bending properties of the equilibrated structures were studied for two methods
of strain application; (i) displacement of end-cap atoms (comprising the end-ring Si atoms and
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(b)

θ

R
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(a)

Figure 2. 6M–6L SWT: (a) under proportional tensile strain (PS) at two different simulation times,
(b) under bending stress with curvature radius R and radial distance, ya , to the central surface.

the O atoms attached only to those end-ring silicons) parallel to the principle (symmetry) axis
at a velocity corresponding to a given strain rate with the other atoms unconstrained, and (ii)
displacement of all atoms along the principle axis with the displacement proportional to the
atom distance from the system center (see figure 2(a)) and velocity corresponding to a given
strain rate. For brevity, we refer to the former procedure as end-atom strain (EAS) and the latter
as proportional strain (PS). In both cases, the tensile strain is the ratio between the incremental
deformation length of the system and the non-deformed length, (L−L0)/L0 and is incremented
at each MD step according to the specified strain rate. The stress is obtained as the sum of the
end-cap atom force components parallel to the symmetry axis divided by the projected cross
sectional area of the end caps [21, 22]. Note that, in both types of tensile simulations, only the
end-cap radii are kept fixed.

For bending the procedure was similar. The nanotubes were subjected to constant strain
rates, with the strain applied via EAS, except, of course that the end-cap atom displacements
were essentially radial; see figure 2(b). The opposite end of the nanotube was fixed (pinned).
We assumed a quasi-cylindrical geometry for all systems (see figure 2(b)) with curvature radius
R and radial distances ya measured from the central axis. More precisely, ya denotes the
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perpendicular distance from the central surface, over which there is no stress. In an ideal
homogeneous rod, the axial strain sya at any ya would be

sya = ya

R
= κya, (2)

(κ = curvature). Adaptation of this definition to the atomistic rods under consideration requires
specification of physically meaningful values of ya. As in the stretching simulations, the end-
cap radii were fixed. Denote that value as ya

max. From equation (2), the bending strain sya at the
end-caps is

smax
ya = κya

max. (3)

The torque on the system due to ‘axial’ forces (i.e., those forces normal to the plane of the
end-cap Si atoms; see figure 2(b)) is

M =
∫

Fa dya =
∫

σ a ya dA, (4)

where σ a is the axial stress. Then, assuming the axial stress to be proportional to radial position,

σ a
max

ya
max

= σ a

ya
, (5)

the torque becomes

M = σ a
max

ya
max

∫
(ya)2 dA = σ a

max

ya
max

I, (6)

so

σ a
max = M

I
ya

max. (7)

Here I is the areal analogue of a moment of inertia. At a given strain value, M was calculated as
the sum of torques of the parallel components (with respect to the principal axis) of the end-cap
atom forces, while I was taken as a constant in terms of ya

max.
The importance of quantum effects in nanostructures makes quantum mechanical

benchmarking significant for any classical MD study such as this one. In principle one wants,
at least, the Born–Oppenheimer potential energy surface instead of a model potential such as
equation (1). The well-known difficulty is the extremely high computational cost–benefit ratio
of even relatively simple quantum mechanical (QM) methods such as density functional theory
(DFT), the Hartree–Fock (HF) approximation, or even tight-binding versions of them. For the
larger systems in this study, the computational cost would be prohibitive. However, we did
investigate the mechanical properties of a small system, the 6M–6L nanotube, under tension
and bending using (i) a re-parameterized [23] semi-empirical QM method (MNDO [24]) and
(ii) the multi-scale methodology of Mallik et al [22]. The multi-scale calculation involves the
calculation of forces on atoms using either MNDO or a classical potential of the same form
as FB and BKS, depending on whether the atoms are identified as ‘quantum’ or ‘classical’.
The potential parameterization differs from both FB and BKS values; see table 1. That
parameterization, designated NTH-2 by its originators, was constrained specifically to match
the MNDO stress response for the 6M–6L nanorod for uniaxial tensile strains up to 10%. We
used the same semi-empirical MNDO97 program [24] with the NDDO parameters obtained via
the transfer Hamiltonian method [23]. Automated interoperation of the MNDO97 code with
the DL POLY MD package [19] for these multi-scale simulations was achieved via the PUPIL
framework [25, 26].
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Figure 3. Variation in binding energies of SWT for different radii as a function of number of rings
for (a) FB and (b) BKS. The energies are expressed with respect to the 6M–6L structures; see text.

3. Results and discussions

3.1. SWT equilibrium structures

Figures 3(a) and (b) present the variation in binding energy (BE) of the SWTs as a function
of tube length (L) for different ring sizes (M) using the FB and BKS parameterizations
respectively for equilibrium structures at T = 0 K. Those BE shifts are relative to the BE
of the 6M–6L structure, −16.54 eV/atom for FB and −18.88 eV/atom for BKS. Those
values, in turn, are with respect to the separated atom limit for the respective parameterizations.
Notice that both those BEs are much larger in magnitude than the experimental BE of quartz
(−6.4 eV/atom), a direct consequence of the potential parameterizations. Neither FB nor BKS
was calibrated to match the absolute energies predicted by underlying quantum mechanical
methods. For BKS, the parameters which yield the right ground state structure of α-quartz
were chosen from among the multiple parameter sets that fit HF data on a tetrahedral cluster.
The FB parameterization criterion was that the potential yield the right relative ordering of the
DFT energetics of selected nanostructures.

Figure 3 shows that for the shorter FB SWTs, L � 12, the BEs of the 6M, 8M , and 10M
structures are almost degenerate and lower than the corresponding BEs of the 12M and 4M
structures. For L > 12, the FB 6M SWT structures are the most stable and appear to be

6



J. Phys.: Condens. Matter 19 (2007) 386238 K Muralidharan et al

on a smooth progression to an extended system limit. On the other hand, the 4M, 8M , and
10M FB SWTs have energetically favored lengths (L = 24, 12, 12 respectively), suggestive
perhaps of some systematic behavior (‘magic number’). No trend toward a finite BE extended
system limit is evident for the 4M , 6M , and 8M SWTs. Both the 10M and 12M FB SWTs are
almost indifferent, so far as BE is concerned, to length beyond 18L, suggestive of a rather weak
progression to a finite BE infinite-length limit. Thus the FB parameter set, which is calibrated
to small nanostructures, does display size effects for some but not all of these silica nanotubes.

The BKS SWTs differ, qualitatively and quantitatively, from the FB SWTs. Only the 12M
BKS SWTs have an energetically favored length (12L). For L > 12, the 10M BKS structure
is the most stable but only modestly so compared to the 8M systems. In marked contrast, at
the same lengths those are the two least favorable FB structures. Both the 10M and 12M BKS
SWTs exhibit insensitivity to length at large L, while the 6M and 8M BEs are only moderately
sensitive to L. At large L, the 12M BKS systems are least favorable, in contrast to the FB
prediction of being next-to-most favorable. Except for the 4M , the BE dependence on L of all
the BKS SWTs is suggestive of finite BEs in the infinite-length limit. Such behavior is at least
consistent with the idea that the BKS parameterization cannot recognize nanoscale properties
because that parameterization ultimately is determined by bulk silica properties.

The 4M systems thus are particularly interesting. For L > 30, the 4M BKS nanotubes
are more favorable with respect to the shorter ones whereas the FB SWTs have the opposite
energetics. For both parameterizations, when the systems were equilibrated at either 10 or
300 K, the longer 4M structures, namely the 30L and 36L for both parameterizations as
well as the FB 4M–24L structure lost their tubular character and spontaneously twisted. See
figure 4(a). Therefore, we do not report stress–strain results (see below) for 4M BKS systems
with L � 30 nor FB systems with L � 24. Further, the fact that both parameterizations gave
the same sort of geometry but opposite trends of energy with length is a striking example of
parameterization sensitivity, one which should be quite testable. With two other exceptions, all
the remaining SWTs retained their tubular structure when equilibrated at higher temperatures.

Those exceptions are the BKS 12M–6L and 12M–12L structures, which rearrange to
form twin-columnar structures; see figures 4(b) and (c). A surprising structural feature of these
twin-columnar structures is the presence of three-coordinated oxygens (3-C O) that connect
the two columns, along with singly coordinated oxygens (1-C O) at the ends. For the FB
parameterization, we did not see the spontaneous rearrangement of the 12M–6L and 12M–
12L SWTs to form the twin-columnar structures when we equilibrated the structures at either
10 or 300 K. However, when initially placed in the twin-columnar structures, the FB systems
did reach an energy minimum at T = 0 K and did retain that conformation at T = 10, 300 K.
The BEs of the resulting two FB twin structures are higher than the corresponding single-wall
tubes by only about 0.02 eV/atom: the two conformations are almost isoenergetic in the FB
parameterization. Above T = 0 K, the absence of knowledge of entropic effects means that the
energy differences just discussed must be interpreted with care. Nevertheless, there does seem
to be strong indication of rearrangement being favored by the shorter 12M systems.

Returning to the topic of nanoscale versus bulk parameterization effects, it is illuminating
to compare the BE of pairs of nanotubes with the same number of atoms. We considered three
pairs: (i) 6M–8L, 8M–6L, (ii) 6M–10L, 10M–6L, and (iii) 6M–12L, 12M–6L with 144, 180
and 216 atoms respectively. See table 2. For both parameterizations the 6M nanotubes always
are lower in energy than their equal-population counterparts. This result might not seem to be
too surprising given that bulk silica polymorphs are characterized by 6M rings. Still, the fact
that, for a given length, the BKS BEs for 6M ring structures are higher than those of the 8M
and 10M structures while FB favors the 6M structures for �12 is rather striking since the FB
parameterization has no input from bulk silica data, while BKS does. Moreover, there is a clear,
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Figure 4. Structural illustration of (a) 4M–24L nanotube showing distortion from regular structure
(see text), (b) 12M–6L nanotube, (c) 12M–6L twin-columnar nanotube. Oxygen and silicon atoms
are represented by black and grey spheres respectively. One- and three-coordinated oxygens are
encircled.

Table 2. Comparison of energies of different sized nanotubes having the same number of atoms.
Energies are expressed with respect to the 6M–6L BE; see text.

144 180 216

6M–8L 8M–6L 6M–10L 10M–6L 6M–12L 12M–6L
(eV/SiO2) (eV/SiO2) (eV/SiO2)

FB −0.05 −0.03 −0.07 −0.02 −0.10 −0.01
BKS −0.05 −0.01 −0.08 0.01 −0.11 0.02

sharp distinction for both parameterizations between size as measured by SiO2 population and
as measured by the numbers of M and L.

Next we consider the T = 10 K structural characteristics of the various energy-minimized
SWTs. For each SWT, we examined the average (i) inter-ring distances (R–R), (ii) intra-ring
Si–O bond distances (R1), (iii) intra-ring Si–O–Si angles (A1), and (iv) bridging angles (A2),
i.e. the angles formed between the Si–O bonds associated with the bridging oxygens. For
clarity, all these quantities are illustrated in figure 5. Variations in these quantities as a function
of L and M for both FB and BKS are displayed in figures 6 and 7 respectively. In each of
those figures, the inset presents the corresponding end-cap structural quantity, in recognition of
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Figure 5. Representation of the structural quantities that characterize a nanotube, illustrated, for
convenience, by the 6M–2L SWT. Oxygen and silicon atoms are represented by black and grey
spheres respectively.

Figure 6. Variation of (a) A1, (b) A2, (c) R1, (d) R–R for the FB SWTs. The inset in each figure
represents the corresponding end-cap structural quantities.

the fact that the end structure of all the SWTs differs from the rest of the tube because of the
stoichiometry-preserving oxygen termination at the ends. In all structures, the intra-ring Si–
O–Si angle typically equals the tetrahedral angle (109.5◦). Among the rods, all the intra-ring
Si–O–Si angles are rather similar and so also are the A2 values.

Examination of figures 6 and 7 reveals that, for both parameterizations, the variation in
A1, A2, R1, and R–R with L for the longer (L � 24) 4M SWT structures differs greatly from
the corresponding variations for the other tubes. The difference is attributable to the distorted
nature of the equilibrated structures of the longer 4M tubes discussed above. Another striking
fact is that for all but one of the SWTs, the FB R–R values are greater than those from BKS and
consequently the FB tubes always are longer than the corresponding BKS tubes. The exception

9
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Figure 7. As in figure 6 for BKS SWTs.

is the case of large L for the 8M tubes for which the R–R values are similar. Also note that,
except for M = 4, the FB systems exhibit much smoother L-dependence than the BKS systems.
It remains to be determined (via multi-scale or all-quantum force calculations) whether this is
a genuine size effect, as might be suggested by the FB parameterization procedure.

There are more subtle structural aspects of the various SWTs. Except for the 4M
structures, the variation of A1 with L is very similar for both FB and BKS: A1 is almost
independent of L and decreases with increasing M . There is no corresponding simple
dependence of A2 upon M or L, though the values of A2 for both parameterizations are roughly
comparable at all L (A2 ≈ 125◦). R1 values for the BKS tubes always are smaller than for the
FB tubes, behavior that is consistent with that of R–R. Both behaviors are plausible, in that the
BKS parameters were optimized to yield the ground state structure of quartz, which has a Si–O
bond length ≈1.62 Å, while FB parameters were constrained to yield the calculated properties
of silica nanostructures with typical bond lengths ≈1.68 Å.

3.2. MWT equilibrium structures

The multi-wall tubes (MWT) were formed by concentric nesting of 4M and 6M tubes within
10M and 12M tubes for different lengths, followed by relaxation at T = 0 K. The most
stable (by about 0.05 eV/atom) among the various MWTs was the 6M nested within the 12M
structures, referred to as the (12–6)M (see figure 8). It is the only one which we examine in
more detail.

The variation in BE for the (12–6)M MWT as a function of L for both parameterizations
is shown in figures 9(a) and (b) respectively. Those figures include, for comparison, the BEs of
the SWTs that are the most favored energetically (6M and 10M for FB and BKS respectively).
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Figure 8. Side and longitudinal view of a (12–6)M MWT. One- and three-coordinated oxygens are
encircled.

Figure 9. Variation in binding energies of the (12–6)M MWT as a function of number of rings
for (a) FB and (b) BKS. For reference, in each figure, the binding energy of the most stable family
of SWT (as a function of L) for the particular potential is also given. Note that the energies are
expressed with respect to the 6M–6L structure.

The relative BEs of the FB and BKS (12–6)M are a study in contrast. The BKS MWT always
is lower in BE than the corresponding length SWT, while the opposite is true for the FB MWT

11
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Figure 10. Variation in binding energies of the (12–6)M MWT as a function of number of atoms
for (a) FB and (b) BKS. For reference, in each figure, the binding energy of the 6-M structure
having the same number of atoms is also given. Energies are expressed with respect to the 6M–6L
structure for the respective potentials.

beyond L = 12. Moreover, the FB (12–6)M has a minimum energy length at L = 12, while
the BKS MWT has no distinct minimum in the range of L we treated. Both become weakly
dependent on length above 24L. We also compared the BE of the (12–6)M MWT and 6M
structures that had the same number of atoms; see figures 10(a) and (b). Again, the FB and BKS
MWTs exhibit essentially opposite behaviors. Except for the smallest system (324 atoms), the
BKS MWTs are more stable with respect to their 6M counterparts, while the FB 6M tubes
are always more stable than the FB (12–6)M MWTs. This distinction is striking, given the
common behavior that more aggregated systems are at least weakly stable with respect to their
less aggregated counterparts. At least in this sense, FB clearly favors small systems. MWTs
with 1296 or more atoms are essentially degenerate energetically with respect to length for
either parameterization, consistent with a finite BE infinite-system limit.

The structural quantities (A1, A2, R1, R–R) of the BKS and FB MWTs at different lengths
are given in figures 11(a) and (b). As might be expected from the SWTs, R1 and R–R for the
FB MWTs are greater than the corresponding BKS quantities, though at large L (�30), the
R–R values from both parameterizations become comparable. Similar to the 12M–6L twin-
columnar structure, the various MWTs also involve 3-C and 1-C Os. While the 1-C oxygen
atoms are present at the ends in both the MWT and the twin-columnar 12M–6L, the 3-C Os
are present only at the ends of the MWT. This difference with respect to the 12M–6L structure
is because in it the 3-C Os serve as connectors and are present along the length of the tube.

12
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Figure 11. Variation of (a) A1 and A2, (b) R1 and R–R for FB and BKS (12–6)M MWTs.

3.3. Tensile and bending properties of silica SWTs and MWTs

We turn to the response of the nanotubes under tensile and bending strains. We used a strain
rate of 5 × 10−7/(MD time step), in order to include thermal relaxation effects fully as the
material fails. The MD time step was 2 fs, hence the strain rate was 2.5 × 10−4 ps−1. Each
simulation ran 500 000 time steps after thermalization.

3.3.1. Tensile. When subjected to uniaxial tensile strains, the failure mechanisms of all
SWTs for both EAS and PS were similar for both parameterizations. The bond breaking
and material separation occurred near one of the SWT ends (at both 10 and 300 K). At first
thought, such behavior might be attributed to the presence of strained end-caps. However, the
failure mode was the same for both EAS and PS, so that speculation does not hold up. Instead,
detailed examination of the Si–O bond distances and inter-ring distances (R–R) suggests that
the nanotubes deform via initiation of a stress wave toward one end. The wave traverses the
tube and ultimately leads to fracture at an end. The initial asymmetry in this process originates
in the thermalization procedure which, for any given type of rod, will produce slightly different
configurations (positions, velocities) depending on the precise number of MD thermalization
steps. Such thermalized configurations do not preserve precisely the initial symmetry of the
rod. The existence of stress waves follows from the pumping of the system caused by the
application of strain (effective external force) at each MD step followed by as much relaxation
(accommodation to internal forces) as is possible for each time step. We note that the effects of

13
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Figure 12. Variation in R–R as a function of ring position for strains of (a) 0.015, (b) 0.045 and 0.06,
and (c) 0.11 for the FB 6M–36L SWT when subjected to a uniaxial strain rate of 2.5 × 10−4 ps−1

at 10 K.

this sort of oscillatory behavior on the relationship between stresses from atomistic simulations
and from continuum systems had been discussed by Zhou [27] (at the very end of the paper),
though in the context of thermal oscillations.

Insight into the failure process is aided by consideration of figures 12(a)–(c). They display
the variation in R–R as a function of ring position (along the system) for different strains for
the FB 6M–36L at 10 K. Assuming, for convenience, that the principle axis of the SWT

14
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Figure 13. Fracture of the FB 6M–36L SWT when subjected to a uniaxial strain rate of
2.5 × 10−4 ps−1 at 10 K.

is horizontal such that the ring position index increases from left to right, we see that at
strain = 0.018 (figure 12(a)) the R–R distances between ring positions 30–35 (i.e. on the right
side of the SWT) are larger than the R–R values for the other ring positions. At a higher
strain = 0.045 (figure 12(b)), the R–R distances are larger in the middle of the rod, while
at strain = 0.060 (figure 12(b)), the R–R distances between ring positions 5–10 are now the
largest. At higher strains (figure 12(c)) the R–R distances at the left end of the SWT continue
to increase, and finally, the left end (usually consisting of 2–3 rings) separates as illustrated in
figure 13. In short, during the initial stages of strain application, one end of the SWT is under
tension (or compression) with respect to the other end, a situation that gives rise to a stress
wave that propagates along the SWT as the system is subjected to increasing strain.

Figure 14(a) presents the 10 K tensile stress–strain curves of the 6M–36L SWT for both
parameterizations. Clearly the stress variation in what ordinarily would be the elastic regime
is highly non-linear. Indeed, within that strain range, there is an interval for which the average
stress response is approximately strain independent. This behavior can be correlated to the
variation in inter-ring distances (figures 12(a)–(c)) and its relation to the definition used for
calculating the stress. Recall that the calculated stress is a local quantity characteristic of
the end-cap forces. Specifically, the strain-independent interval corresponds to the initiation
and propagation of the stress wave just discussed. In that regime, the calculated stress can be
roughly constant or even decrease. The calculated virial stress exhibits the same behavior, a fact
which lends confidence to the notion that the behavior is not simply a computational artifact.
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Figure 14. Uniaxial stress–strain curves for (a) 10 K FB and BKS 6M–36L SWT, (b) 10 K FB and
BKS 6M–6L and 12M–6L SWT, (c) 10 and 300 K FB and BKS 6M–6L , and (d) FB 8M SWTs
for various L .

For a given M , the phenomenon of stress wave propagation is most noticeable in the
longer SWTs. Consequently the strain-independent regions of the stress–strain curves for the
shorter SWTs are not obvious to the unaided eye. See figure 14(b) for example. Note also
that the constituent rings of the SWT remain rather well defined even as the system is strained
uniaxially, hence none of the structures exhibit ‘necking’ prior to failure.

Values of the Young’s modulus E at T = 10 K of the family of structures for each M
are given in tables 3 and 4. We approximated E for the SWTs by evaluating the slope of the
stress–strain curve in what we denote as the ‘extended elastic’ regime in figure 14(a), i.e., linear
interpolation from zero strain to failure. Obviously the approximation is quite severe in that it
ignores the nearly strain-independent stress region just discussed. The approximation clearly is
better for the shorter tubes in any fixed-M family. It is important to note that the stress responses
of all structures (at 10 K) until failure were independent of the initial conditions (i.e. velocity
distributions and starting configuration) though the end at which failure occurred depended
on the initial conditions. In other words, the variation in tensile stress maxima (σmax), strains
(smax), and consequently E were negligible though the location of failure varied depending on
the initial condition.

Tables 3 and 4 together with table 5 comprise a survey of the tensile and bending properties
of the various systems. Note that the BKS 12M-(6L and 12L) moduli reported in table 3 are
for the twin-columnar structures.

The following trends emerge. The values of E , tensile stress maxima (σmax), and tensile
strains (smax) before failure of the BKS SWTs generally exceed those for the corresponding FB
systems. Exceptions are E for the 8M–18, 24, 30, 36L SWTs and smax for the 4M–18L SWT.
E is almost independent of temperature, though there are, of course, more fluctuations in the
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Table 3. Young’s and bending modulus (103 GPa) for single-walled structures as a function of
number of ring members (M) and layers (L), regarding both BKS and FB parameterizations at 10 K
under stretching and bending deformations. See text regarding omitted values.

Stretching Bending

M L BKS FB BKS FB

4 6 1.72 1.19 2.40 1.84
12 1.68 0.70 2.23 1.75
18 1.70 0.65 1.68 1.51
24 1.23 0.90 — —
30 — — — —
36 — — — —

6 6 1.19 0.86 2.16 1.51
12 1.21 0.86 2.18 1.30
18 1.22 0.86 2.19 1.01
24 1.22 0.88 2.15 1.00
30 1.19 0.84 2.23 1.02
36 1.24 0.86 2.20 1.01

8 6 0.90 0.66 1.40 1.04
12 0.89 0.73 1.59 1.04
18 0.92 0.92 1.88 1.12
24 1.02 1.54 1.98 1.16
30 1.02 1.69 1.89 1.06
36 1.02 1.76 1.96 1.05

10 6 0.71 0.53 1.10 0.64
12 0.73 0.58 0.99 0.52
18 0.72 0.57 0.94a 0.55
24 0.73 0.57 1.46a 0.57
30 0.73 0.57 1.71a 0.38
36 0.73 0.47 1.64a 0.32

12 6 0.61b 0.43 0.89b 0.63
12 0.63b 0.44 0.89b 0.56
18 0.66 0.43 0.55c 0.51
24 0.66 0.46 0.58c 0.50
30 0.67 0.45 0.45c 0.45
36 0.67 0.46 0.30c 0.50

a Change of geometry induced by bending deformation. Splitting into 2 × 5M rods.
b Initial geometry is the 2 × 6M column structure.
c Change of geometry induced by bending deformation. Splitting into 2 × 6M rods.

stress response at T = 300 K. See, for example, the temperature dependence in figure 14(c)
(and as well, the results discussed below in the context of full quantum force calculations).
Typically, for a given M , E does not vary greatly with L. Notable exceptions again are the
8M FB SWTs, for which E generally increases with increasing L and jumps between L = 18
and 24. The variation in E with L is not nearly so dramatic for the 8M BKS SWTs. The other
major exception is the irregular variation of E for the 4M SWTs in both parameterizations. This
irregular behavior of the longer 4M structures correlates with the distorted tubular structures
discussed already. Those structures make the longer 4M SWTs comparatively much weaker.
For the other structures, failure occurred at smaller strains for increasing L. (Recall that for
the 4Ms, the BKS 30L, 36L and FB 24L, 30L, and 36L systems would not equilibrate to a
straight geometry, so table 3 omits those systems.)
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Figure 15. Uniaxial stress–strain curves for (a) FB and (b) BKS (12–6)M MWTs.

Other interesting behaviors include the fact that for a given L, E and σmax decrease with
increasing M for the BKS structures. The behavior of the FB SWTs is more varied. Putting
aside the 4Ms as anomalous, the FB 12Ls have E decreasing with increasing M , but for L > 12
the 8Ms are quite substantial exceptions. At fixed L, σmax for the FB structures (again excluding
4M) generally decreases with increasing M , but for L = 30 and 36, M = 12 is an exception.
The M = 10 FB structures are notably weaker in both cases. Note also that the 8M and 10M
FB rods exhibit dramatic size effects in smax between L = 12, 18 and L = 24, 30 respectively.
Corresponding σmax behavior occurs in the 10M FB SWTs but not the 8Ms. Whether this is
a genuine size effect parameterized by FB is another open question beyond the reach of the
present calculations. It is at least suggestive that BKS does not generate comparable behavior.

Turning to the MWTs under uniaxial strain, though failure also occurred at the ends, there
was no evidence of stress-wave-assisted fracture akin to that seen in the SWTs. Similar to
the SWTs, during the initial stages of strain application, one end was in tension relative to the
other. However, with increasing strain, that end continued to be in tension, a feature which led
to fracture there. See discussion above. The 10 K Young’s modulus of the MWT is listed in
table 4, and the MWT stress–strain curves are given figure 15. Notice that BKS predicts the
(12–6)M–6L to be the stiffest of these MWTs, while FB predicts the opposite.

3.3.2. Bending. Distinct from the uniaxial stretching case, for bending the various structures
did not always separate at the ends. Typically, bond breakage first occurred at the middle of
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Figure 16. Fracture of (a) FB 6M–30L SWT, (b) FB 12M–36L SWT, under bending when
subjected to a strain rate of 2.5 × 10−4 ps−1 at 10 K.

Table 4. As in table 3 for (12–6)M MWT structures.

Stretching Bending

L BKS FB BKS FB

6 1.13 0.35 1.70 0.44
12 0.92 0.61 1.53 1.05
18 1.03 0.85 1.68 1.08
24 0.85 0.96 1.73 0.52
30 0.91 1.10 1.65 0.52
36 0.91 0.87 1.55 0.50

the structure in the tensile zone (i.e. outside the unstrained central axis), behavior which is
entirely plausible. The smaller radii structures are much stronger and stiffer, with separation
occurring at the middle of the structure (figure 16(a)), while the much weaker larger radii
structures (M > 8) fail via necking at more than one site (figure 16(b)). Qualitatively, the
smaller radii structures snap (to use an analogy with macroscopic failure) while the larger radii
structures fold (or crimp). This difference in failure mode is a result of the relative stability of
the respective ring structures. The 6M and 8M rings are structurally more stable under bending
than the 10M and 12M rings. Further, the longer BKS 10M and 12M structures proved to be
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Table 5. Comparison of maximum stress–strain points (i.e. just prior to failure), σmax (GPa), smax,
as a function of layers (L) for various structures and for both BKS and FB parameterizations at 10 K
under stretching and bending deformations.

Stretching Bending

BKS FB BKS FB

M L smax (%) σmax (GPa) smax (%) σmax (GPa) smax
ya (%) σmax (GPa) smax

ya (%) σmax (GPa)

4 6 16.4 266 9.8 118 18.1 262 11.0 192
12 14.7 264 14.2 83 6.1 167 15.9 54
18 14.5 271 16.3 88 6.5 137 17.4 103
24 12.9 266 11.1 118 — — — —
30 — — — — — — — —
36 — — — — — — — —

6 6 17.8 193 13.5 103 13.1 257 13.6 201
12 17.4 182 13.2 96 13.6 256 13.0 158
18 14.1 190 11.0 107 11.7 240 14.3 157
24 13.5 196 10.6 109 10.4 222 12.4 177
30 12.9 196 11.0 110 10.8 256 12.4 156
36 12.8 196 10.7 110 10.2 264 12.8 173

8 6 17.0 142 12.3 74 11.2 126 13.0 131
12 14.6 133 12.1 69 10.1 144 13.2 115
18 12.9 143 8.0 79 13.4 148 8.9 111
24 12.5 145 5.9 79 8.3 135 6.7 111
30 12.3 144 4.8 80 6.0 131 17.2 114
36 11.8 145 4.7 80 5.6 142 6.4 101

10 6 16.1 105 11.8 56 17.0 108 15.0 80
12 15.0 101 12.5 54 17.1 83 17.5 70
18 11.7 104 10.8 53 15.0a 72a 14.0 73
24 17.0 105 10.6 53 3.4a 58a 8.9 58
30 16.9 103 5.2 32 14.7a 57a 6.7 37
36 13.8 102 5.3 22 2.3a 45a 6.3 31

12 6 15.8b 87b 12.2 47 9.2b 66b 11.5 55
12 15.2b 84b 9.9 42 17.5b 56b 8.9 44
18 14.4 86 11.2 49 8.8c 48c 11.3 49
24 14.3 88 10.9 49 9.2c 49c 6.4 49
30 14.0 88 10.6 51 4.4c 50c 7.4 39
36 14.0 87 10.4 50 4.7c 37c 8.0 43

a Change of geometry induced by bending deformation. Splitting into 2 × 5M rods.
b Initial geometry is the 2 × 6M column structure.
c Change of geometry induced by bending deformation. Splitting into 2 × 6M rods.

unstable under bending. At very small bending strains (<0.05), they rearrange into the twin-
columnar structures previously discussed for the 12M–(6L and 12L) SWT.

The bending stress–strain curves for selected structures for both FB and BKS
parameterizations are given in figure 17 and the bending moduli B and failure data for the
various structures also are tabulated in tables 3–5. Similar to the stretching results, for a given
M , B does not vary much with temperature and L. Further, for a given structure, B was usually
greater than E . One can rationalize the difference in moduli on the basis that the initiation and
propagation of stress waves determine the stress response and nature of failure of the structures
under tension, while in structures that are bent the loss of axial symmetry impedes stress wave
propagation. Thus, the structures are stiffer when bent as compared to uniaxially strained. The
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Figure 17. Bending stress–strain curves for selected FB and BKS SWT when subjected to a strain
rate of 2.5×10−4 ps−1 at 10 K. The inset represents the corresponding end-cap structural quantities.

MWTs fail in similar fashion to the SWTs under bending, with initial bond breakage occurring
at the middle. As expected from the SWT behavior, the BKS MWTs are much stiffer than FB;
see table 4.

3.4. All quantum mechanical and multi-scale simulations

The often disparate (and sometimes peculiar) predictions of the two potential parameterizations
(BKS, FB) make insights from quantum mechanical (QM) calculations of the inter-atomic
forces particularly desirable. The issue is particularly important because of the exclusive
parameterization of FB to quantum mechanical forces on small nanostructures of various
symmetries. As sketched in section 1, we used two different approximations to treat the 6M–
6L SWT for that purpose. One was full quantum (FQ) simulations in which the forces on
all atoms were obtained from the approximate QM methodology called neglect of diatomic
differential overlap (NDDO). Unlike the usual quantum chemistry implementation however,
we used NDDO parameters obtained via the transfer Hamiltonian (TH) method of Taylor et al
[23]. The essence of their approach is to find NDDO parameters such that the resulting forces
reproduce bond-breaking forces for selected paradigmatic molecules as calculated in very high
quality quantum chemical calculations. The simplicity of the TH-NDDO Hamiltonian results in
a relatively affordable electronic structure calculation for each configuration of atomic positions
in the MD run.

For insight into the relationship between size and QM, we also employed a multi-scale
approach. In it, QM forces are computed in a small sub-region of the system with the rest
of the forces from classical potentials. We used the composite nanorod system previously
proposed and studied by Mallik et al [22]. It consists of a central QM ring, also with TH-NDDO
forces. The rest of the atoms interact via a pair potential of the BKS/FB form but parameterized
differently. The parameterization, NTH-2, is constrained to reproduce the equilibrium tensile
elastic moduli for an all-QM (TH-NDDO) forces simulation of the 6M–6L SWT. Interactions
between the classical and QM regions are handled by substituting a modified F atom (modified
NDDO parameters) as a pseudo-atom at the sites of the bridging O surrounding the central ring.
To identify the effects of the NTH-2 parameterization (recall table 1 for values), we also did
classical MD with it.
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Table 6. Comparison of stress–strain data for the FQ and classical (BKS, FB and NTH-2)
treatments of the 6M–6L rod subjected to uniaxial strain (proportional strain—PS) at a rate of
0.025 ps−1. The maximum stress–strain point before failure (σmax, smax) and Young’s modulus (E)
are reported.

1 K 10 K 300 K

smax (%) σmax (GPa) smax (%) σmax (GPa) smax (%) σmax (GPa)
E(×103 GPa) E(×103 GPa) E(×103 GPa)

FQ 21.3 196 21.2 197 20.1 184
1.04 1.04 1.05

BKS 18.4 189 18.0 187 15.1 173
1.39 1.39 1.40

FB 13.7 100 13.7 102 11.7 82
0.92 0.93 0.88

NTH-2 13.4 101 13.3 99 11.3 88
1.01 1.01 1.01

The FQ and multi-scale simulations were done for both tensile and bending stress response
with strain rate of 0.025 ps−1, 5000 time steps, each 2 fs. Compared with our all-classical
work, this is a much shorter MD series with much more rapid strain, obvious consequences
of the relative computational cost of the QM forces. In addition, we used the Nosé–Hoover
thermostat in contrast to the velocity rescaling used in related prior work [22]. The simulations
were carried out at T = 1, 10, and 300 K. We used both EAS and PS deformations for tensile
stress and EAS for bending. Values of Young’s modulus were obtained by linear regression
from 0 to 5% strain for each of the simulated systems. The failure-strain, maximum stress
point was determined by fitting the stress–strain data to a second- or third-order polynomial.

As shown in tables 6 and 7 (for PS and EAS respectively), we obtain a maximum stress
and failure strain close to the FQ calculation for the BKS potential but for the Young modulus
we find better agreement for the FB and NTH-2 potentials. Recall that NTH-2 was trained
specifically to match the Young’s modulus of the 6M–6L SWT NDDO-TH. Interestingly, the
quantum-mechanically trained potential parameterizations, NTH-2 and FB, give rather similar
results for smax, σmax, smax

ya
, and σmax,bending, especially at the lower temperatures. A cautionary

fact is that the FB parameterization, developed and calibrated to FQ calculations on small silica
systems, does not give results that agree with the present FQ results. The difference surely
arises in part from the two different QM approximations used, TH-NDDO here versus DFT in
the FB work. The fact that the two parameterizations nonetheless give similar results suggests
that the functional form of the potential limits the extent to which QM parameterization inputs
can influence the calculated behavior of nanosystems.

The bending results are shown in table 8. Relative to the FQ calculations, all three
potential parameterizations overestimate the bending modulus B and the location of the
maximum stress, failure-strain point. The BKS potential follows the same tendency as observed
in stretching deformations: it gives the strongest bending modulus. All of the bending
calculations, irrespective of the source of forces, exhibit a plastic zone between 12% strain and
failure because of atomic reorganization in the compression zone (inside the central surface).
Increasing the temperature results in a longer plastic zone for the FQ calculation that is not
observed in any of the classical potential cases.

At the lower temperatures, the qualitative character of failure of the FQ 6M–6L nanorod
under either tension or bending in all cases was similar to that observed using the all-classical
forces. Such behavior is consistent with the 6M–6L mechanical properties under tension (recall

22



J. Phys.: Condens. Matter 19 (2007) 386238 K Muralidharan et al

Table 7. As in table 6 but for end-atom strain—EAS.

1 K 10 K 300 K

smax (%) σmax (GPa) smax (%) σmax (GPa) smax (%) σmax (GPa)
E(×103 GPa) E(×103 GPa) E(×103 GPa)

FQ 21.8 197 21.8 198 19.4 179
1.05 1.05 1.06

BKS 19.8 198 19.4 195 16.6 182
1.41 1.40 1.43

FB 15.2 108 15.1 108 12.0 88
0.94 0.94 0.88

NTH-2 13.9 105 13.5 103 12.0 89
1.02 1.02 1.01

Table 8. As in table 6 for bending (end-atom strain—EAS) at strain rate of 0.025 ps−1. The
maximum stress–strain point before failure (σmax, smax

ya ) and Bending modulus (B) are reported.

1 K 10 K 300 K

smax
ya (%) σmax (GPa) smax

ya (%) σmax (GPa) smax
ya (%) σmax (GPa)

B(×103 GPa) B(×103 GPa) B(×103 GPa)

FQ 11.9 128 17.8 142 12.6 112
1.37 1.31 1.14

BKS 13.1 199 9.8 194 10.0 198
1.98 2.27 2.28

FB 18.0 143 11.2 150 10.3 136
1.18 1.51 1.50

NTH-2 18.3 157 11.1 166 11.2 153
1.39 1.70 1.63

tables 6–8). At 300 K, failure was characterized by a substantial non-linear or plastic zone in
the stress–strain curves and fracture was more gradual than at the lower temperatures.

Results from multi-scale treatment of stretching and bending in the composite system are
shown in table 9. The bending results are close to those from the FQ calculations. Under
stretching deformation, the composite treatment gives a 6M–6L Young’s modulus close to that
from the NTH-2 potential (which is used on the classical zone of the composite). The maximum
of the tensile stress–strain curve from the multi-scale treatment is much softer than for either
the full classical or FQ systems. In principle, the dependence of this softening on the size
(number of rings) of the QM zone should be studied but a problem intervenes, as follows.

All multi-scale methodologies face the challenge of maintaining consistency (or, at least,
minimizing inconsistency) between the QM and classical potential forces. In the present case,
as the number of rings included in the quantum region is increased, the difference between the
stiffness calculated from classical and QM forces becomes problematical. The difference is so
large that the system becomes unstable during simple relaxation without any externally imposed
stress. The result is that the nanotube symmetry is broken and there is notable atomic position
reorganization in both the quantum zone and the buffer zone adjacent to it. Such behavior
clearly prevents the application of the corresponding stretching and bending deformation to
composite (embedded quantum zone) systems with more than one ring.
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Table 9. Comparison of the stress–strain data for the FQ and multi-scale (QM-MD) simulations
of the 6M–6L rod subjected to uniaxial strain and bending at strain rate of 0.025 ps−1 at 1 K.
The maximum stress–strain point before failure and the Young’s (E) and Bending (B) moduli are
reported.

Stretching Bending

smax (%) σmax (GPa) smax
ya (%) σmax (GPa)

Q. Z. (rings) E(×103 GPa) B(×103 GPa)

1 16.1 95 11.3 130
1.01 1.31

6 (FQ) 21.8 197 11.9 128
1.05 1.37

4. Conclusions

We have examined the structure, energetics and mechanical properties of various cylindrical
silica nanotubes as a function of length and radius using MD techniques. The inter-atomic
interactions were modeled first via two different parameterizations of the same pair potential
form, FB and BKS. Those parameterizations are based on distinctly different reference systems.
However, the calculated nanorod behaviors do not separate neatly by parameter set. Some
calculated features of the SWT nanotubes obtained using the two sets differ greatly, while
other aspects are strikingly similar. Specifically, the nature of failure of the various nanotubes
under tension and bending using both parameterizations is qualitatively the same. Though the
moduli of the various structures obtained differ, they are comparable in magnitude. Presumably
these similarities trace to the functional form of the potential.

However, there are notable differences in predicted length dependences. One example is
the moduli of the FB 8M SWTs, which are much more dependent on L than for the BKS
counterparts. Another is the difference in the predicted existence of energetically favored
lengths. A systematic distinction is that, for a given length, the BKS parameters always predict
the more compact (or dense) multi-wall nanotubes to be more stable, while FB parameters
predict the 6M structures to be energetically favored.

For comparison and additional insight into some of these differences, we also studied the
mechanical properties of the 6M–6L nanotube using semi-empirical QM methods as well as
multi-scale methods. At lower temperatures, failure of the FQ 6M–6L nanotube under tension
and bending is qualitatively similar to that from the classical potentials as are its mechanical
properties under tension. At 300 K, failure was characterized by a substantial ‘plastic’ zone in
the stress–strain curves and fracture was more gradual. Also, the composite nanotube was
slightly weaker than the FQ structure and failed at a larger fracture strain. However, the
difference between the present QM results and the FB potential parameterization indicate a
strong dependence on method. This is a difficulty already seen in other work on the ingredients
of multi-scale simulation [28].

Since not much experimental information is available on silica nanotubes, we hope that
this work will help to stimulate experimental synthesis and characterization of such structures.
Having experimental data could help test one of the more striking qualitative predictions,
namely the BKS energetic instability toward twin-columnar forms of the initially 12M–6L
and 12M–12L nanotubes. In contrast, the FB prediction is essentially isoenergetic for the two
conformations, a fact which suggests a thermodynamically driven variation in conformation.
Pertinent experimental data also could help resolve the differences between and among the
various calculational approaches, e.g., the length dependences of the moduli discussed above.
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